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ABSTRACT   

Interest on the control of light at the nano- and microscale has increased in the last years because of the incorporation of 
nanostructures into optical devices. In particular, semiconductor oxides microstructures emerge as important active 
materials for waveguiding and confinement of light from UV to NIR wavelengths. The fabrication of high quality and 
quantity of nano- and microstructures of semiconductor oxides with controllable morphology and tunable optical 
properties is an attractive challenge in this field.  

In this work, waveguiding and optical confinement applications of different micro- and nanostructures of gallium oxide 
and antimony oxide have been investigated. Structures with morphologies such as nanowires, nanorods or branched 
nanowires as elongated structures, but also triangles, microplates or pyramids have been obtained by a thermal 
evaporation method. Light waveguide experiments were performed with both oxides, which have wide band gap and a 
rather high refractive index. The synthesized microstructures have been found to act as optical cavities and resonant 
modes were observed. In particular, photoluminescence results showed the presence of resonant peaks in the PL spectra 
of Ga2O3 microwires and Sb2O3 micro-triangles and rods, which suggest their applications as optical resonators in the 
visible range. 
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1. INTRODUCTION 
A better understanding of light confinement in dielectric materials will enable to exploit devices based on optical 
microcavities1. Recent research activities devoted to the fabrication and design of nano- and microstructures made of 
semiconductor oxides have paved the way to a wide range of applications. Besides the wide range of morphologies 
developed in semiconductor oxides, these materials allow several approaches to generate and confine light inside oxide 
microstructures. The challenge is to tune the doping and morphology/shape in order to make microstructures acting like 
optical cavities and eventually support resonant optical modes inside them. To achieve this goal, the sizes of the 
microstructures should match to light wavelengths in order to satisfy the interference boundary conditions, as for 
example is required in a Fabry-Perot interferometer. Optical resonant cavities of ZnO, GaN or In2O3 microstructures have 
been recently reported2-4. In some cases, laser emission has even been achieved in these media5. However, there are more 
oxide materials with promising potentialities in which issues concerning optical losses, emission wavelength range or 
quantum efficiency are still under investigation. Oxide materials with wide bandgap energies make possible optical 
confinement in a wide energy range. It is well known that optical active impurities and native defects play a major role in 
luminescence properties of oxide microstructures6. The next step is to establish the interplay of these intrinsic properties 
with morphology and shape features, which is a key factor in view of their applications as optical microcavities. 

Thermal evaporation methods were used to grow several kinds of morphologies, from single nanowires and nanobelts7 to 
more complex structures such as hierarchical structures arising from self assembled processes8. In this work, we use both 
gallium oxide and antimony oxide to fabricate optical microcavities. In gallium oxide light is generated inside the 
microstructures due to the presence of optical active impurities9, and in antimony oxide the light arises from radiative 
transitions involving near band edge emission and levels related to native defects10.The studied structures are microwires 
of gallium oxide and microtriangles and microrods of antimony oxide, respectively. The experimental data support the 
occurrence of Fabry-Perot resonances in these structures. 
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UV-blue range (380 - 450 nm) due to the near band edge luminescence of orthorhombic microwires, while defect related 
emission from cubic micro-triangles shows resonant peaks in the PL spectra at the intermediate region, 450 - 650 nm.  

Proc. of SPIE Vol. 8626  86260T-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/03/2013 Terms of Use: http://spiedl.org/terms



 

 

ACKNOWLEDGMENTS 
This work has been financially supported by Spanish Government through MAT 2009 – 07882, MAT 2012- 31959 and 
CONSOLIDER CSD 2010 – 00013 projects. 

REFERENCES 

[1] Vahala, K. J., “Optical microcavities” Nature 124, 839-846 (2003). 
[2] Wang, N.W., Yang, Y.H. and Yang, G.W. " Fabry–Pérot and whispering gallery modes enhanced luminescence 

from an individual hexagonal ZnO nanocolumn" Appl. Phys. Lett. 97, 041917-1 - 041917-3 (2010). 
[3] Schwartzberg, A.M., Aloni, S., Kuykendall, T., Schuck, P.J. and Urban, J.J. "Optical cavity characterization in 

nanowires via self-generated broad-band emission" Optics Express, 19, 8904-8911 (2011). 
[4] Dong, H., Chen, Z., Sun, L., Lu, J., Xie, W., Tan, H.H., Jagadish, C. and Shen, X. " Whispering gallery modes 

in indium oxide hexagonal microcavities" Appl. Phys. Lett. 94, 173115-1 - 173115-3 (2009). 
[5] Zimmler, M.A., Bao, J., Capasso, F., Müller, S. and Ronning, C. "Laser action in nanowires: Observation of the 

transition from amplified spontaneous emission to laser oscillation" Appl. Phys. Lett. 93, 051101-1 - 051101-3 
(2008).  

[6] Nogales, E., López, I., Méndez, B., Piqueras, J., Lorenz, K., Alves, E. and García, J.A. "Doped gallium oxide 
for photonics"  Proc. of SPIE Vol 8263, 82630B-1 – 82630B-7 (2012). 

[7] Wang, Z.L."Nanobelts, Nanowires and Nanodiskettes of Semiconducting Oxides – from materials to 
nanodevices" Adv. Mater., 15, 432-436 (2003). 

[8] Cebriano, T., Méndez, B. and Piqueras, J. “Micro- and nanostructures of Sb2O3 grown by evaporation-
deposition: Self assembly phenomena, fractal and dendritic growth,” Mat. Chem. Phys. 135, 1096-1103 (2012). 

[9] López, I., Nogales, E., Méndez, B. and Piqueras, J. “Resonant cavity modes in gallium oxide microwires,” Appl. 
Phys. Lett. 100, 261910-1 – 261910-3 (2012). 

[10] Cebriano, T., Méndez, B. and Piqueras, J. “Study of luminescence and optical resonances in Sb2O3 micro- and 
nanotriangles,” J. Nanopart. Res. 14, 1215-1 – 1251-8 (2012). 

[11] López, I., Nogales, E., Méndez, B., Piqueras, J., Peche A., Ramirez-Castellanos, J. and Gonzalez-Calbet, J. 
"Influence of Sn and Cr Doping on Morphology and Luminescence of Thermally Grown Ga2O3 Nanowires" J. 
Phys. Chem. C, (accepted).  

[12] Ma, R.M., Wei, X.L., Dai, L., Liu, S.F., Chen, T., Yue, S., Li, Z., Chen, Q. and Qin, G.G. “Light Coupling and 
Modulation in Coupled Nanowire Ring−Fabry-Pérot Cavity” Nano Letters, 9, 2697- 2703 (2009). 

[13] Binet, L. and Gourier D. “Origin of the blue luminescence of β-Ga2O3” J. Phys. Chem. Solids, 59, 1241-1249 
(1998). 

[14] Nogales, E., Méndez, B. and Piqueras, J. " Cathodoluminescence from β-Ga2O3 nanowires" Appl. Phys. Lett. 
86, 113112 (2005). 

[15] Nogales, E., García, J.A., Méndez, B. and Piqueras, J. "Red luminescence of Cr doped Ga2O3 nanowires" J. 
Appl. Phys. 101, 033517-1 - 033517-3 (2007). 

[16] Rebien, M., Henrion, W., Hong, M., Mannaerts, J.P. Fleischer, M. "Optical properties of gallium oxide thin 
filsm" Appl. Phys. Lett. 81, 250-1 250-3 (2002). 

[17] Duan, X., Huang, Y., Agarwal, R. and Lieber, C.M. "Single-nanowire electrically driven lasers" Nature 421, 
241-245 (2003). 

[18] Svensonn, C. "Refinement of the crystal structure of cubic antimony trioxide, Sb2O3" Acta Cryst. B 31, 2016-
2018 (1975). 

[19] Svensonn, C. "The crystal structure of orthorhombic antimony trioxide, Sb2O3" Acta Cryst. B 30, 458-461 
(1974). 

[20] Tigau, N., Ciupina, V. and Prodan, G. "Structural, optical and electrical properties of Sb2O3 thin films with 
different thickness" J. Optoelectron. Adv. Mater. 8, 37- 42 (2006). 

[21] Deng, Z., Tang, F., Chen, D., Meng, X., Cao L., Zou, B. " A Simple Solution Route to Single-Crystalline Sb2O3 
Nanowires with Rectangular Cross Sections" J. Phys. Chem. B, 110, 18225-18230 (2006). 

[22] Chen, Q., Hu, Y., Huang, Y., Du, Y. and Fan, Z. "Equilateral triangle- resonator injection lasers with directional 
emission" IEEE J. Quantum Electron, 43, 440–444 (2007). 

[23] Tigau, N., Ciupina, V. and Prodan, G. "The effect of substrate temperature on the optical properties of 
polycrystalline Sb2O3 thin films" J. Cryst. Growth, 277, 529–535 (2005). 

Proc. of SPIE Vol. 8626  86260T-7

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/03/2013 Terms of Use: http://spiedl.org/terms


